Source code for psyclone.psyir.transformations.chunk_loop_trans

# -----------------------------------------------------------------------------
# BSD 3-Clause License
#
# Copyright (c) 2021-2024, Science and Technology Facilities Council.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
# Authors A. B. G. Chalk, STFC Daresbury Lab
# Modified S. Siso and N. Nobre, STFC Daresbury Lab
# -----------------------------------------------------------------------------

'''This module provides the ChunkLoopTrans, which transforms a Loop into a
chunked implementation of the Loop'''

from psyclone.core import VariablesAccessInfo, Signature, AccessType
from psyclone.psyir import nodes
from psyclone.psyir.nodes import Assignment, BinaryOperation, Reference, \
        Literal, Loop, Schedule, CodeBlock, IntrinsicCall
from psyclone.psyir.symbols import DataSymbol, ScalarType
from psyclone.psyir.transformations.loop_trans import LoopTrans
from psyclone.psyir.transformations.transformation_error import \
        TransformationError


[docs] class ChunkLoopTrans(LoopTrans): ''' Apply a chunking transformation to a loop (in order to permit a chunked parallelisation). For example: >>> from psyclone.psyir.frontend.fortran import FortranReader >>> from psyclone.psyir.nodes import Loop >>> from psyclone.psyir.transformations import ChunkLoopTrans >>> psyir = FortranReader().psyir_from_source(""" ... subroutine sub() ... integer :: ji, tmp(100) ... do ji=1, 100 ... tmp(ji) = 2 * ji ... enddo ... end subroutine sub""") >>> loop = psyir.walk(Loop)[0] >>> ChunkLoopTrans().apply(loop) will generate: .. code-block:: fortran subroutine sub() integer :: ji integer, dimension(100) :: tmp integer :: ji_el_inner integer :: ji_out_var do ji_out_var = 1, 100, 32 ji_el_inner = MIN(ji_out_var + (32 - 1), 100) do ji = ji_out_var, ji_el_inner, 1 tmp(ji) = 2 * ji enddo enddo end subroutine sub ''' def __str__(self): return "Split a loop into a chunked loop pair" def validate(self, node, options=None): ''' Validates that the given Loop node can have a ChunkLoopTrans applied. :param node: the loop to validate. :type node: :py:class:`psyclone.psyir.nodes.Loop` :param options: a dict with options for transformation. :type options: Optional[Dict[str, Any]] :param int options["chunksize"]: The size to chunk over for this \ transformation. If not specified, the value 32 is used. :raises TransformationError: if the supplied Loop has a step size \ which is not a constant value. :raises TransformationError: if the supplied Loop has a non-integer \ step size. :raises TransformationError: if the supplied Loop has a step size \ larger than the chosen chunk size. :raises TransformationError: if the supplied Loop is a chunked loop. :raises TransformationError: if the supplied Loop has a step size \ of 0. :raises TransformationError: if the supplied Loop writes to Loop \ variables inside the Loop body. :raises TransformationError: if the supplied Loop contains a \ CodeBlock node. :raises TransformationError: if an unsupported option has been \ provided. :raises TransformationError: if the provided tilesize is not a \ positive integer. ''' if options is None: options = {} super().validate(node, options=options) # Validate options map # TODO #613: Hardcoding the valid_options does not allow for # subclassing this transformation and adding new options, this # should be fixed. valid_options = ['chunksize'] for key, value in options.items(): if key in valid_options: if key == "chunksize" and not isinstance(value, int): raise TransformationError( f"The ChunkLoopTrans chunksize option must be a " f"positive integer but found a " f"'{type(value).__name__}'.") if key == "chunksize" and value <= 0: raise TransformationError( f"The ChunkLoopTrans chunksize option must be a " f"positive integer but found '{value}'.") else: raise TransformationError( f"The ChunkLoopTrans does not support the " f"transformation option '{key}', the supported options " f"are: {valid_options}.") if not isinstance(node.step_expr, nodes.Literal): # If step is a variable we don't support it. raise TransformationError( f"Cannot apply a ChunkLoopTrans to a loop with a non-literal " f"step size, but a step expression node of type " f"'{type(node).__name__}' was found.") if node.step_expr.datatype.intrinsic is not \ ScalarType.Intrinsic.INTEGER: raise TransformationError( f"Cannot apply a ChunkLoopTrans to a loop with a non-integer " f"step size, but a step expression of type " f"'{node.step_expr.datatype.intrinsic.name}' was found.") chunk_size = options.get("chunksize", 32) if abs(int(node.step_expr.value)) > abs(chunk_size): raise TransformationError( f"Cannot apply a ChunkLoopTrans to a loop with larger step " f"size ({node.step_expr.value}) than the chosen chunk size " f"({chunk_size}).") if 'chunked' in node.annotations: raise TransformationError("Cannot apply a ChunkLoopTrans to " "an already chunked loop.") if int(node.step_expr.value) == 0: raise TransformationError("Cannot apply a ChunkLoopTrans to " "a loop with a step size of 0.") if len(node.loop_body.walk(CodeBlock)) != 0: raise TransformationError("Cannot apply a ChunkLoopTrans to " "a loop which contains a CodeBlock " "node.") # Other checks needed for validation # Dependency analysis, following rules: # No child has a write dependency to the loop variable. # Find variable access info for the loop variable and step refs = VariablesAccessInfo(node.start_expr) bounds_ref = VariablesAccessInfo() if refs is not None: bounds_ref.merge(refs) refs = VariablesAccessInfo(node.stop_expr) if refs is not None: bounds_ref.merge(refs) # The current implementation of ChunkLoopTrans does not allow # the step size to be non-constant, so it is ignored. # Add the access pattern to the node variable name bounds_ref.add_access(Signature(node.variable.name), AccessType.READWRITE, self) bounds_sigs = bounds_ref.all_signatures # Find the Loop code's signatures body_refs = VariablesAccessInfo(node.loop_body) body_sigs = body_refs.all_signatures for ref1 in bounds_sigs: if ref1 not in body_sigs: continue access2 = body_refs[ref1] # If access2 is a write then we write to a loop variable if access2.is_written(): raise TransformationError( f"Cannot apply a ChunkLoopTrans to this loop because " f"the boundary variable '{access2.signature.var_name}' " f"is written to inside the loop body.")
[docs] def apply(self, node, options=None): ''' Converts the given Loop node into a nested loop where the outer loop is over chunks and the inner loop is over each individual element of the chunk. :param node: the loop to transform. :type node: :py:class:`psyclone.psyir.nodes.Loop` :param options: a dict with options for transformations. :type options: Optional[Dict[str, Any]] :param int options["chunksize"]: The size to chunk over for this \ transformation. If not specified, the value 32 is used. ''' self.validate(node, options) if options is None: options = {} chunk_size = options.get("chunksize", 32) # Create (or find) the symbols we need for the chunking transformation routine = node.ancestor(nodes.Routine) end_inner_loop = routine.symbol_table.find_or_create_tag( f"{node.variable.name}_el_inner", symbol_type=DataSymbol, datatype=node.variable.datatype) outer_loop_variable = routine.symbol_table.find_or_create_tag( f"{node.variable.name}_out_var", symbol_type=DataSymbol, datatype=node.variable.datatype) # We currently don't allow ChunkLoops to be ancestors of ChunkLoop # so our ancestors cannot use these variables. # Store the node's parent for replacing later and the start and end # indices start = node.start_expr stop = node.stop_expr # For positive steps we do: # el_inner = min(out_var+chunk_size-1, el_outer) if int(node.step_expr.value) > 0: add = BinaryOperation.create( BinaryOperation.Operator.ADD, Reference(outer_loop_variable), BinaryOperation.create( BinaryOperation.Operator.SUB, Literal(f"{chunk_size}", node.variable.datatype), Literal("1", node.variable.datatype))) minop = IntrinsicCall.create(IntrinsicCall.Intrinsic.MIN, [add, stop.copy()]) inner_loop_end = Assignment.create(Reference(end_inner_loop), minop) # For negative steps we do: # el_inner = max(out_var-chunk_size+1, el_outer) elif int(node.step_expr.value) < 0: sub = BinaryOperation.create( BinaryOperation.Operator.SUB, Reference(outer_loop_variable), BinaryOperation.create( BinaryOperation.Operator.ADD, Literal(f"{chunk_size}", node.variable.datatype), Literal("1", node.variable.datatype))) maxop = IntrinsicCall.create(IntrinsicCall.Intrinsic.MAX, [sub, stop.copy()]) inner_loop_end = Assignment.create(Reference(end_inner_loop), maxop) # chunk_size needs to be negative if we're reducing chunk_size = -chunk_size # step size of 0 is caught by the validate call # Replace the inner loop start and end with the chunking ones start.replace_with(Reference(outer_loop_variable)) stop.replace_with(Reference(end_inner_loop)) # Create the outerloop as a bare Loop construct outerloop = Loop(variable=outer_loop_variable) outerloop.children = [start, stop, Literal(f"{chunk_size}", outer_loop_variable.datatype), Schedule(parent=outerloop, children=[inner_loop_end])] # Add the chunked annotation outerloop.annotations.append('chunked') node.annotations.append('chunked') # Replace this loop with the outerloop node.replace_with(outerloop) # Add the loop to the innerloop's schedule outerloop.loop_body.addchild(node)