# -----------------------------------------------------------------------------
# BSD 3-Clause License
#
# Copyright (c) 2023-2024, Science and Technology Facilities Council
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
# Author: R. W. Ford, STFC Daresbury Lab
'''Module providing a transformation from a PSyIR PRODUCT intrinsic to
an equivalent PSyIR loop structure. This could be useful if the PRODUCT
operator is not supported by the back-end, the required
parallelisation approach, or if the performance in the inline code is
better than the intrinsic.
'''
from psyclone.psyir.nodes import IntrinsicCall, BinaryOperation, Literal
from psyclone.psyir.symbols import ScalarType
from psyclone.psyir.transformations.intrinsics.array_reduction_base_trans \
import ArrayReductionBaseTrans
[docs]
class Product2LoopTrans(ArrayReductionBaseTrans):
'''Provides a transformation from a PSyIR PRODUCT IntrinsicCall node to
an equivalent PSyIR loop structure that is suitable for running in
parallel on CPUs and GPUs. Validity checks are also performed.
If PRODUCT contains a single positional argument which is an array,
the maximum value of all of the elements in the array is returned
in the the scalar R.
.. code-block:: fortran
R = PRODUCT(ARRAY)
For example, if the array is two dimensional, the equivalent code
for real data is:
.. code-block:: fortran
R = 1.0
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
R = R * ARRAY(I,J)
If the mask argument is provided then the mask is used to
determine whether the product is applied:
.. code-block:: fortran
R = PRODUCT(ARRAY, mask=MOD(ARRAY, 2.0)==1)
If the array is two dimensional, the equivalent code
for real data is:
.. code-block:: fortran
R = 1.0
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = R * ARRAY(I,J)
The dimension argument is currently not supported and will result
in a TransformationError exception being raised.
.. code-block:: fortran
R = PRODUCT(ARRAY, dimension=2)
The array passed to PRODUCT may use any combination of array
syntax, array notation, array sections and scalar bounds:
.. code-block:: fortran
R = PRODUCT(ARRAY) ! array syntax
R = PRODUCT(ARRAY(:,:)) ! array notation
R = PRODUCT(ARRAY(1:10,lo:hi)) ! array sections
R = PRODUCT(ARRAY(1:10,:)) ! mix of array section and array notation
R = PRODUCT(ARRAY(1:10,2)) ! mix of array section and scalar bound
An example use of this transformation is given below:
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Product2LoopTrans
>>> code = ("subroutine product_test(array)\\n"
... " real :: array(10,10)\\n"
... " real :: result\\n"
... " result = product(array)\\n"
... "end subroutine\\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> product_node = psyir.children[0].children[0].children[1]
>>> Product2LoopTrans().apply(product_node)
>>> print(FortranWriter()(psyir))
subroutine product_test(array)
real, dimension(10,10) :: array
real :: result
integer :: idx
integer :: idx_1
<BLANKLINE>
result = 1.0
do idx = 1, 10, 1
do idx_1 = 1, 10, 1
result = result * array(idx_1,idx)
enddo
enddo
<BLANKLINE>
end subroutine product_test
<BLANKLINE>
'''
_INTRINSIC_NAME = "PRODUCT"
_INTRINSIC_TYPE = IntrinsicCall.Intrinsic.PRODUCT
def _loop_body(self, lhs, rhs):
'''Provide the body of the nested loop that computes the maximum value
of the lhs and rhs.
:param lhs: the lhs value for the product operation.
:type lhs: :py:class:`psyclone.psyir.nodes.Node`
:param rhs: the rhs value for the product operation.
:type rhs: :py:class:`psyclone.psyir.nodes.Node`
:returns: the product of the lhs and rhs.
:rtype: :py:class:`psyclone.psyir.nodes.BinaryOperation`
'''
# return lhs * rhs
return BinaryOperation.create(BinaryOperation.Operator.MUL, lhs, rhs)
def _init_var(self, reference):
'''The initial value for the variable that computes the product
of an array.
:param reference: the reference used to store the final result.
:type reference: :py:class:`psyclone.psyir.node.Reference`
:returns: PSyIR for the value to initialise the variable that
computes the product.
:rtype: :py:class:`psyclone.psyir.nodes.IntrinsicCall`
'''
intrinsic = reference.datatype.intrinsic
precision = reference.datatype.precision
scalar_type = ScalarType(intrinsic, precision)
if intrinsic == ScalarType.Intrinsic.REAL:
value_str = "1.0"
elif intrinsic == ScalarType.Intrinsic.INTEGER:
value_str = "1"
# Note, the validate method guarantees that an else branch is
# not required.
return Literal(value_str, scalar_type)